Non-invasive sampling provides insights into carnivore ecology via mark-recapture, occupancy, and genetic connectivity for elusive top predators such as jaguars and tigers

A fully grown adult male tiger photographed by a camera Trap, photo by Marcella Kelly.

A fully grown adult male tiger photographed by a camera trap set up by Marcella Kelly’s lab.

Marcella Kelly, an Associate Professor at the Virginia Tech Dept. of Fish & Wildlife Conservation, will be presenting a seminar at the University of Alberta this week. Her talk will be in the Biological Sciences Building room M149 at 2pm on Friday, September 11.

Jaguar photographed by a trail camera set up by Marcella Kelly's lab.

Abstract: Remote camera trapping and molecular scatology have enabled researchers to gain valuable information on previously intractable, elusive top predators. For jaguars in Belize, camera trapping techniques have enabled us to examine the co-existence of multiple predators simultaneously to determine whether jaguars function as an umbrella species or whether meso-predators are suppressed by high numbers of the top predator. Additionally, using scat samples collected with the aid of detector dogs, combined with molecular scatology, we find evidence of a generally well-mixed jaguar population in Belize, yet a faint hint of population sub-structure exists, pointing to the importance of maintaining targeted wildlife corridors. For tigers in Nepal, camera trapping in the forested, hilly habitat known as the Churia, previously considered unsuitable, has revealed a healthy (albeit lower density) tiger population and a potentially thriving leopard population. Unlike Belize however, landscape genetics from molecular scatology in Nepal has revealed a highly structured tiger population with low levels of gene flow among tiger sub-populations. Habitat restoration or targeted translocations may be necessary to maintain genetic connectivity across the landscape.